несобственный - translation to russian
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

несобственный - translation to russian


несобственный      
adj.
improper, nonintrinsic, ideal, singular; несобственная точка, ideal point; несобственное нормальное распределение, singular normal distribution; несобственная прямая, ideal (straight) line; несобственный интеграл, improper integral
non-intrinsic      

общая лексика

несобственный

ideal line         
CONCEPT IN GEOMETRY AND TOPOLOGY
Ideal line

общая лексика

несобственная линия

несобственная прямая

Definition

Несобственные интегралы

обобщение классического понятия интеграла на случай неограниченных функций и функций, заданных на бесконечном промежутке интегрирования (см. Интеграл). Определённый интеграл как предел интегральных сумм Римана может существовать (иметь определённое конечное значение) лишь для ограниченных функций, заданных на конечном интервале. Поэтому, если интервал интегрирования или подынтегральная функция не ограничены, для определения интеграла требуется ещё один предельный переход: получающиеся при этом интегралы называются несобственными интегралами.

Если функция f (x) интегрируема на любом конечном отрезке [a, N] и если существует

то его называют Н. п. функции f (x) на интервале [а, ∞] и обозначают

В этом случае говорят, что Н. и. сходится. Когда этот предел, а значит и Н. и., не существует, то иногда говорят, что Н. и. расходится. Например,

сходится при γ > 1 и расходится при γ ≤ 1. Аналогично определяют Н. и. на интервалах

[-∞, b] и [-∞, ∞].

Если функция f (x), заданная на отрезке [a, b], не ограничена в окрестности точки a, но интегрируема на любом отрезке [а + ε, b], 0 < ε < b - a и если существует

то его называют Н. и. функции f (x) на [а, b] и записывают обычным образом:

Аналогично поступают, если f (x) не ограничена в окрестности точки b.

Если существует Н. и.

или

то говорят, что Н. и.

или

абсолютно сходится: если же последние интегралы сходятся (но первые расходятся), то Н. и.

или

называются условно сходящимися.

Задачи, приводящие к Н. и., рассматривались в геометрической форме Э. Торричелли и П. Ферма в 1644. Точные определения Н. и. даны О. Коши в 1823. Различие условно и абсолютно сходящихся Н. и. установлено Дж. Стоксом и П. Г. Л. Дирихле (1854). Ряд работ математиков 19 в. посвящен вычислению Н. и. в случаях, когда соответствующая первообразная не выражается через элементарные функции. Основными приемами вычисления Н. и. являются дифференцирование и интегрирование по параметру, разложение в ряды, применение теории вычетов. Значения многих Н. и. приводятся в различных таблицах.

Н. и. имеют важное значение во многих областях математического анализа и его приложений. В теории специальных функций (цилиндрических функций, ортогональных многочленов и др.) одним из основных способов изучения является изображение функций в виде Н. и., зависящих от параметра, например

(см. Гамма-функция). К Н. и. относится и Фурье интеграл, а также интегралы, встречающиеся при др. интегральных преобразованиях. Решения краевых задач (См. Краевые задачи) математической физики записываются кратными Н. и. с неограниченной подинтегральной функцией. В теории вероятностей важное значение имеет Н. и.

в теории диффракции света - Н. и.

В ряде случаев расходящимся Н. и. можно приписать определённое значение (см. Суммирование). В частности, если интеграл

расходится, но существует

то А называется главным значением Н. и. и обозначают

Так,

Аналогично вводится главное значение Н. и. от неограниченных функций. В работах Н. И. Мусхелишвили и его учеников построена теория интегральных уравнений, содержащих Н. и., понимаемые в смысле главного значения.

Лит.: Смирнов В. И., Курс высшей математики, 20 изд., т. 2, М. - Л., 1967; Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд. т. 2, М., 1969; Кудрявцев Л. Д., Математический анализ, т. 1, М., 1970.

Examples of use of несобственный
1. Ощущение такое, что человек не просто готовился к разговору, к общению, а дифференцировал несобственный интеграл.
What is the English for несобственный? Translation of &#39несобственный&#39 to English